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Abstract

This paper presents a novel approach to optimizing movement in urban areas through a dynamic
multi-layer walkability model. This research uncovers new facets of walkability modeling within
transit-oriented movement, aligning pedestrian pathways (Routes) with urban architecture, public
spaces, and green spaces (Nodes). The dynamic multi-layer (DML) approach involves optimizing both
the Nodes and Routes of the transit system using a multi-objective optimization method. This method
improves accessibility and connectivity by aggregating the results of agent-based modeling for route
simulations and considers multiple criteria, including greenness, distance to transit, and destination
accessibility. Experimentation with a case study produced several findings that underscore the value
of multi-layered models for transit movement and the power of computational methods in optimizing
both Nodes and Routes. This discovery offers valuable insights into the DML process and its potential
applications in the field of urban design and architecture. Keywords – Multi-layer, Walkability model,

Transit-oriented movement, Optimization method, Agent-based modeling

1 Introduction

Urban areas globally are confronted with challenges caused by inadequate infrastructure, resulting
in decreased physical activity, mainly walking and cycling, and hindering transit connectivity.1,2,3,4,5

These issues are influenced by many factors, such as high population density and behavioral patterns
shaped by urban culture.6 The resultant challenges extend to physical structures and have socio-
economic implications for cities.6

In the context of rapid urbanization, there is an urgent need for improved urban and transport
planning to address these challenges effectively.7 Policymakers and planners play a significant role in
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promoting human-oriented mobility and environmental interactions, especially in densely populated
cities.8,9 Their interventions are vital in fostering walkability and cycling, directly impacting the sus-
tainability and livability of urban areas.10 Strategies like developing integrated transportation hubs
with public amenities like green spaces offer cost-effective solutions to mitigate climate change im-
pacts.7,11

Incorporating walkability principles into urban planning promotes a healthier urban environment
by including green spaces and pedestrian-friendly features.4,12,13 Through deep analysis and problem
identification using bottom-up modeling approaches.14,15 complex traveler interactions can be simu-
lated to optimize planning and design outcomes. This approach significantly contributes to reducing
unnecessary physical activities such as sprawl, congestion, and segregation within cities.16

To improve the quality of life for urban residents, integrating smart urban development strate-
gies and empirical measurements into urban planning is crucial, especially for long-term planning.17

Prioritizing human-centered concepts over vehicle-oriented ones and focusing on environmental sus-
tainability can significantly enhance the city’s effectiveness and livability. This includes prioritizing
mass transportation over private vehicles to minimize urban sprawl and congestion, ultimately making
cities more compact and livable.18

In conclusion, implementing sustainable and human-centered approaches is essential for enhancing
walkability and cycling infrastructure, improving city livability,7 and addressing challenges in under-
developed urban areas. For instance, shifting from car reliance to mass transport is key to achiev-
ing compact cities and reducing uncontrolled urban sprawl.17 Drawing insights from the mentioned
studies, this research aims to experiment with a novel approach to address walkability challenges in
underdeveloped urban areas.

1.1 Walkability modeling & agent-based modeling and simulation

Walkability modeling (WM) involves simulating pedestrian movement in constrained environments,
which makes it a valuable tool for understanding real-world situations and enhancing our knowledge of
pedestrian behavior.15 This method allows for a detailed analysis of programs and patterns, suggesting
improvements to existing structures for greater efficiency.19,20 In the context of urban development,
WM primarily focuses on assessing how human behavior impacts physical activity, providing insights
that are crucial for urban planning and design.21

On the other hand, agent-based modeling is used to simulate the complex nature of walkability and
its relationships.22,23,24 Agent-based modeling and simulation (ABMS) provides a deep understand-
ing of existing walking habits that directly affect physical activity in urban contexts.15,25 By examin-
ing agent trails generated by ABMS, we can see how pedestrian pathways (Routes) and city features
(Nodes) are interconnected, promoting livability and physical activity while also preparing for future
mitigation efforts. This modeling method is particularly essential in developing countries, where fac-
tors influencing physical activity need to be considered by city stakeholders.26

Integrating ABMS and WM offers significant benefits, including the ability to observe and forecast
phenomena.27 Computational methods within ABMS provide advantages such as dynamic feedback
mechanisms and realistic behavior modeling.14 However, challenges arise when translating data, in-
cluding behavior and ethnographic input, into the ABMS environment.28,29 Nonetheless, ABMS in WM
allows for forecasting in complex scenarios, deepening our understanding of factors influencing human
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mobility in urban settings.30,31

Recent academic attention has focused on integrating ABMS and WM, particularly in transit-
oriented development (TOD), and identifying potential “Nodes” or specific public spaces as key fea-
tures.32,33 Notable studies in this area include Badland et al. (2013), who introduced a web-based
tool for evaluating and enhancing neighborhood walkability, emphasizing improvements like pedes-
trian simulations and considering factors such as residential density and traffic flow.34 Herrmann et
al. (2017) explored the impact of walkability on walking frequency in neighborhoods, advocating for
interventions like reducing parking areas and increasing street-level tree coverage.35 Lu (2017) con-
ducted a comprehensive study on walkability modeling, using GIS methods like Map Overlay and Cost
Distance Analysis to identify strategies for promoting walking across various dimensions.36 Kanchik
(2017) examined the health impacts of enhanced walkability modeling, revealing connections between
architectural elements, perceived safety, physical activity, and overall well-being.37 Additionally, Deng
and Zhang (2018) emphasized their research on neighborhood walkability models, providing urban
planners with standardized benchmarks derived from a walking speed index and walkability maps,
thus facilitating urban improvement strategies.38,39

The studies mentioned above aim to improve neighborhood walkability through pedestrian simu-
lations, benchmarking, and promoting walking to understand its impact on factors like walking fre-
quency, physical activity, safety, and well-being, ultimately enhancing residents’ quality of life in cities.
Although these studies do not specifically simulate individual or group movements iteratively in ABMS,
they lay the groundwork for future research, including our ongoing research, which aims to enhance ac-
cessibility and connectivity. Additionally, they provide a theoretical foundation for understanding how
ABMS can be used to parameterize route simulations considering multiple criteria such as greenness,
distance to transit, safety perceptions, physical activities, health, and destination accessibility. These
studies uncover the complex factors that impact walking behaviors, neighborhood walkability, and the
interconnectedness of elements like buildings, safety perceptions, physical activities, and health.

Furthermore, prior research has highlighted the potential of integrating ABMS into upcoming stud-
ies to explore a shared vision.40,41,42 This approach leads to a deeper understanding and supports data-
driven decisions as reliable problem-solving methods,42 which can ultimately enhance walkability and
promote healthier living environments.34 There is also a growing interest in ABMS within architec-
tural research due to its ability to replicate complex structures and behavioral dynamics.41,43 However,
current ABMS applications mainly focus on understanding agent capabilities and behaviors, analyz-
ing interaction patterns, and simplifying model representations.44 As a result, in our study, we will
further enhance the ABMS method, especially by using ABM to model walkability and optimize move-
ment in urban areas through a novel method that extensively utilizes pedestrian pathways (Routes)
along with urban architecture, public spaces, and green spaces (Nodes). This will uncover new facets
of walkability modeling within transit-oriented movement.

1.2 Research gap

To fill the existing research gap in WM, a new approach is essential. This approach involves analyzing
the behavioral patterns of individuals and relevant urban features, translating them into computa-
tional data, and establishing customized parameters that align with walkability principles, creating
livable cities, promoting health, and integrating transportation systems like TOD.15,19,20,21,32
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Utilizing crowdsourcing platforms such as OpenStreetMap (OSM) and Google Maps Typical Traf-
fic45,46,47,48 in conjunction with field walkability observations for ABMS, is crucial for understanding
the unique characteristics of each city.12,49,50,51,52,53 By incorporating quantitative data and algorithms,
we can enhance the simplified route trails generated by ABMS15,54,55 preparing them for optimization
using a multi-objective approach to effectively tackle urban walkability challenges.56 To ensure prac-
tical applicability, clustering methods are then applied to organize various approaches, algorithms,
methods, and related elements iteratively, based on theoretical frameworks and practical contexts
within WM. This clustering process aims to define Nodes and Routes effectively when implemented
contextually.

The approach mentioned above is termed the dynamic multi-layer (DML) method, which inte-
grates algorithms such as Laplacian smoothing for trail refinement,57,58 A-star for finding the shortest
path,59,60 NSGA-2 for evolutionary multi-objective optimization (EMOO)61,62 and iterative clustering
to refine trails and determine optimal solutions into a single, optimal solution. The Method section
will provide detailed explanations of this DML approach.

In summary, implementing this layered strategy in DML within WM can address current limita-
tions, optimize Nodes and Routes for pedestrian-centric urban design, and enhance connectivity in
urban communities.

The paper is structured as follows: The Case study section introduces the context in which the DML
method is applied to address urban walkability challenges. The Method section outlines the formula-
tion and explanation of the DML method, including dependencies between each layer parameter. The
Discussions section examines the key findings of the DML method and its practical implications. The
Limitations section identifies potential constraints and opportunities within the study. Finally, the
Conclusion section concludes and emphasizes the significance of the research, highlighting the impor-
tance of the DML method and providing implementation recommendations to relevant stakeholders.

2 Case study

In this section, we will elaborate on the rationale for selecting the Kalideres region in Jakarta as the
representative application of the DML method, taking into account its unique contextual characteris-
tics.53

2.1 Urban mobility challenges in Kalideres, Jakarta

Jakarta, Indonesia’s capital, grapples with significant urban walkability challenges. Specifically, the
city suffers from a lack of pedestrian-friendly infrastructure, exemplified by poorly maintained foot-
bridges that force pedestrians into risky behaviors like jaywalking.63 A study conducted by Leather et
al. at the Asian Development Bank (ADB) using the Global Walkability Index (GWI) revealed low rat-
ings across residential, educational, commercial, and public transport zones, underscoring Jakarta’s
substantial deficiencies compared to other Asian cities.64,65
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Figure 1. Demand for TransJakarta buses in Jakarta, depicting daily passenger statistics 8,632 on
buses, sourced from the Pedestrian Facility Design Guidelines DKI Jakarta 2017–2022 by ITDP.66

In the context of Kalideres, located in West Jakarta, there is a notable transit volume compared to
other regions in Jakarta, as depicted in Fig. 1. The area also contends with a dense population, inade-
quate law enforcement, and a disjointed urban transport system between the Kalideres Terminal and
Station.67 Consequently, Kalideres experiences frequent traffic congestion, prolonged vehicle idling,
and the presence of unlicensed informal vendors.68 As of June 2022, Kalideres has been officially des-
ignated for development into a major transportation hub,69 aiming to establish seamless connectivity
to Tangerang City in the west and serve as a crucial transit point for national routes, including those
leading to destinations like Sumatra Island and Bali Island via the Indonesian National Route 1, a
segment of the Asian Highway 2 (AH2).70 This development holds potential benefits for achieving the
research objectives.
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Figure 2. The satellite view of the Kalideres region highlights a significant traffic bottleneck in
the highlighted area, with base satellite imagery sourced from Google Maps.71 Details labeled as
(a) and (b) are shown in Fig. 3.

Fig. 2 provides a satellite image showcasing Kalideres, highlighting the density of residential areas
(including informal and landed housing), commercial zones (ranging from micro to major enterprises),
wetlands (such as paddy fields), and transportation systems (including paratransit, traditional, and
rapid transit), as well as industrial zones (ranging from small to large-scale industries) overflowing in
this area. Additionally, the central terminal’s location underscores the necessity of a proper transit
system to accommodate the rapidly growing population.32
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Figure 3. Field walkability observations in front of the Kalideres Terminal highlight several issues:
(a1) lack of border separating pedestrian walkways from the Moonkevart river, with unattended ur-
ban utilities; (a2) multiuse pedestrian walkway above culverts lacking safety standards; 72 (a3) nar-
rowed pathways causing potential congestion; (a4 and b1) congestion of large buses due to narrowed
lanes; (b3) characteristics of local paratransit (angkot); (b3) presence of informal traders/hawkers
due to congestion; (b4) narrowing of pedestrian walkways due to hawkers; (b5) signage at Kalideres
Terminal.

From a connectivity standpoint, arterial roads face congestion due to the mix of pedestrians, private
vehicles, and public transport, leading to bottlenecks. Fig. 3 illustrates that pedestrian movement is
restricted by a car-oriented system implemented in this area, resulting in longer travel distances and
durations. This contradicts the principles of walkability advocated by TOD and the sustainable city
concept.32,73,74 Therefore, the fundamental need for spacious sidewalks to enhance pedestrian and
cyclist movements becomes evident.
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2.2 Physical activities and green spaces challenges

Emergent challenges related to physical activity and green spaces are also evident in Jakarta.75,76 For
instance, 65% of pedestrian overpasses remain underutilized.64 Issues such as jaywalking and inade-
quate urban features at locations like Kalideres Terminal restrict physical activity opportunities and
contribute to less stimulating environments, potentially leading to stress and risky behaviors.77 To
address these challenges, it is recommended to integrate visual attractions along pedestrian pathways
(Routes) to enhance the overall experience and promote healthier behaviors.77 Additionally, imple-
menting TOD principles in areas like Kalideres and prioritizing urban green open spaces (UGOS) can
enhance attractiveness and encourage pedestrian activity.

Aligning WM simulations with TOD principles supports the development of UGOS through mod-
eling, indirectly improving transportation efficiency by promoting human-oriented movement and en-
hancing public health and well-being through increased green spaces.78,79,80 Integrating UGOS with
public facilities like commuter rest areas provides socio-economic benefits. As of December 2022,
Jakarta had limited public space (PS) and only one transit hub under construction.81 Additionally,
the UGOS footprint in Jakarta has decreased to 110.45 km2.82 Therefore, strategically placing UGOS
as public spaces at intervals of 400–800 meters based on TOD principles is necessary to ensure com-
munity liveliness and well-being.72,83,84

These challenges highlight the importance of further exploring the DML method for WM develop-
ment. Insights from WM can guide the placement of urban features, particularly public spaces acting
as Nodes for rest areas. A comprehensive urban design approach focusing on pedestrian and cycling
amenities aligned with TOD principles can help reduce pollution and traffic incidents in the city.85

Analyzing junctions, interactions, and crowd dynamics within WM can uncover patterns to inform
advanced modeling methods for addressing challenges at critical intersections.

3 Method

3.1 Research framework

The dynamic multi-layer (DML) method is conceptually formulated based on the theoretical frame-
work and the preceding case study. This method employs interconnected dynamic strategies operat-
ing layer by layer, with dependencies between sub-layers as depicted in Fig. 4. It’s important to note
that while the methods outlined are partially contextualized within the selected experimental case
study,63,67,68,82,86,87 adjustments may be necessary in different contexts.53
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Figure 4. The framework of the dynamic multi-layer (DML) method.

The DML method provides a solution for cities aiming to plan and design based on best practices
in urban planning and design principles. It integrates planning for UGOS and PS to promote healthy
urban environments,11,13,79,80,84 focuses on transit hub (TH) placement according to walkability prin-
ciples in TOD,32,66,72,85 and implements physically-oriented linkages between TH and PS with UGOS
included for optimized accessibility within TOD radius principles.72,74,84,88 In conclusion, this method
cohesively integrates multiple approaches to orchestrate an optimal solution (design guideline).

Fig. 4 illustrates the six-layer DML approach, with each layer managing distinct input-output data
interactions. Subsequent layers build upon insights from previous ones, processing data using pre-
determined algorithms and parameters. Layers 1 to 4 prioritize walkability data generation, while
Layer 5 focuses on simulation and optimization, and Layer 6 manages data clustering based on sim-
ulation outcomes. The following overview outlines how the DML addresses the walkability challenge
through integrated TH and PS placements, with detailed explanations of each layer’s operation within
the selected case study provided in subsequent sections.

• Layer 1: Data gathering & modeling preparation, focuses on understanding the environment and
human behavior through detailed data gathering. It establishes a unique context profile and
characteristics (UCPC) by considering parameters such as typical traffic,49 walkability, behavior,
negative–positive, and solid–void.49,89

• Layer 2: Predicting the dynamic model of a complex system, builds upon Layer 1 and predicts
human movement behavior within the environment using dynamic modeling techniques to cus-
tomize the settings of attraction nodes, generating results referred to as human trails and poten-
tial composition (HTPC).50,90

• Layer 3: Simplifying the trails, aims to simplify the complex HTPC generated in Layer 2 for
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easier interpretation and analysis. It utilizes the Laplacian smoothing algorithm to refine the
trails iteratively.57,58

• Layers 4 and 5: Defining and optimizing the objectives. Layer 4 sets clear goals for the optimiza-
tion process in Layer 5 based on a clear understanding of the context and human behavior. It
utilizes the A-star algorithm59,91 for efficient pathfinding92,93,94,95 and defines objective param-
eters related to people, attraction nodes, PS, spatial formation, and TOD principles. Layer 5
focuses on optimizing the objectives formulated in Layer 4 by minimizing values between refined
parameters. It aims to identify solution candidates using the NSGA-2 algorithm.61,62

• Layer 6: Clustering & selecting the best solution, solution candidates undergo clustering and eval-
uation based on predetermined criteria from Layers 1 to 5. Solutions are considered using various
approaches such as Machine-,96 Algorithm-,97 Collaborative-,98 and Context-driven53 methods,
guiding the implementation of the most suitable solution for the selected context.99

3.2 Layer 1: Data gathering & modeling preparation

Figure 5. The taxonomy of routes in Kalideres, based on traffic movement in field walkability
observations.

Layer 1 involved analyzing traffic congestion and pedestrian flow using field walkability observations
(Fig. 3). Digital tools like Rhino,100 Grasshopper,101 and Caribou102 were utilized to map the environ-
ment and create a base map Fig. 5. Observing emergent behaviors, we used crowdsourced data from
Google Maps Typical Traffic to track traffic congestion,47,48,103,104 influencing pedestrian movements
collected from 6 a.m. to 10 p.m., as shown in Fig. 6(a).
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Figure 6. (a) Graphical representations of route segments based on ranking metrics; (b) an ABMS
point map with agents (AR, AT) and targets (T1, T2).

Fig. 6(a) displays Google Maps Typical Traffic data transformed into a ranking schema categoriz-
ing traffic densities into three levels: low, moderate, and high. Each route is assigned “Total points”
and “Rank” per day per 1-hour timestep, allowing us to identify route segments affected by significant
bottlenecks48. This enables ABMS representation of agents and targets in the environment. Concur-
rently, Fig. 6(b) depicts:
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• T1: Primary target for high-density areas, totaling 16 nodes.
• T2: Secondary target for moderately dense regions, totaling 22 nodes.
• AT: Transit-centric agent for arrival/departure epicenters, totaling 25 nodes.
• AR: Resident-centric agent for nodes from residential areas, totaling 49 nodes.

3.3 Layer 2: Predicting the dynamic model of a complex system

Layer 2 employs the ABMS framework to predict complex movement patterns. This framework gen-
erates representation configurations based on behavior data collected during field walkability obser-
vations, creating unique agent configurations for AR, AT, T1, and T2 as informed by Layer 1 insights.
Utilizing Grasshopper101 and the open-source framework Quelea,105 the simulation demonstrates the
iterative behavioral functionalities of each agent group, as outlined in Table 1. To ensure simulation
consistency, Table 2 summarizes the global settings employed for the ABMS.

Table 1. Per iteration settings (customized) for ABMS.

Iteration Agent type Properties Wandering Align force
1 Solo Commuting For students and professionals Activate Deactivate
2 Solo Walking For leisure walkers Deactivate Deactivate
3 Group Touring For group tours Deactivate Activate

Table 2. Global settings for ABMS.

Settings Properties Value

Particle settings
Lifespan -1
Mass 50
Body size 50
History length 500

Agent settings
Max speed 10
Threshold 2.5
Vision radius 50
Vision angle 360 (degree)

Emitter settings

Creation rate 1
Points (AR) 49
Points (AT) 25
Quelea (AR) 10
Quelea (AT) 40
Velocity (AR) 0.5, 0.5, 0 (vector)
Velocity (AT) 2, 2, 0 (vector)

System (particle rules) Arrived radius (T1) 8
Arrived radius (T2) 13

System (agents rules)
Vision radius multiplier 0.9
Min time to collision 9 units
Potential collision distance 100 units
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Figure 7. Aggregated results from Iterations 1, 2, and 3.

After 300 iterative steps per iteration, Fig. 7 presents superimposed results that unveil patterns
across iterations. In Iteration 1, agent navigation exhibits a smoother flow. By Iteration 2, agents
cluster in bustling zones, and by Iteration 3, dense congregations emerge around areas such as T1 and
T2. These dense areas, particularly those near high-traffic zones, become congestion hotspots due to
their population density. The simulations also identify primary axes at road segment intersections,
providing insights for urban renewal and infrastructure enhancements aligned with walkability prin-
ciples.

3.4 Layer 3: Simplifying the trails

Layer 3 abstracts data from three iterations in Layer 2, synthesized in Fig. 7 and elaborated in Fig. 8.
The methodology utilizes the Laplacian smoothing technique,57,58 originally developed by Field55 and
refined by Pryor and Zwierzycki,106 focusing on average calculations of nearby nodes. Its algorithm
includes:
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1. Maintaining consistent spacing of 25m between nodes along curve trails.
2. Identifying uniformly segmented spaces as modifiable modal points.
3. Categorizing modal points based on their position: start, end, or intermediate nodes.
4. Iteratively adjusting intermediate nodes using a loop method based on their relative positions and

average values,107 simulating magnet-like behavior with the loop algorithm from Anemone.108

5. Choosing the final outputs, known as smoothed curve trails, to preserve essential data while
avoiding excessive refinement.

Figure 8. Iterative curve trail-smoothing stages, with the selected 10th iteration highlighted by a
dashed border.

Fig. 8 illustrates the algorithm procedure, particularly spotlighting the 10th iteration for its well-
maintained balance between the original trail’s complexity and simplicity. In this stage, the primary



Dynamic multi-layer walkability model for transit-oriented movement: Nodes and Routes optimization method 15

trails begin to blend harmoniously with the environment, paving the way for further analysis in the
subsequent layer. The next layer concentrates on defining mesh space through the shortest path algo-
rithm (SPA), in line with TOD Standard 3.072 and Sustainable Development Goal 11,109 highlighting
urban design enhancement and resilient transportation infrastructure.

3.5 Layers 4 and 5: Defining and optimizing the objectives

Layers 4 and 5 synergize to optimize solution candidates effectively. Layer 4, depicted in Fig. 9 illus-
trates the evolution of simplified trails across six iterations. Its algorithmic steps include:

1. Smoothing the simple trails to rationalize geometries for faster calculations.
2. Offsetting all curves to create a bounding box for the outer boundary of trails.
3. Further simplifying the trails to ensure consistency and computational efficiency.
4. Utilizing simplified boundary lines to generate a triangulation mesh for graph preparation for

the shortest path algorithm (SPA).
5. Transforming the triangulation mesh into a mesh of near-equilateral triangles using the

TriRemesh component from Kangaroo2.110

6. Simulating the shortest path using the A-star algorithms for SPA, including graphs for the path,
start and end points, and employing the shortest path component from Arachne111 for simulation.

Figure 9. Iteration process for the shortest path from Layer 3’s trails.
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After iterative refinement, the baseline trails have the potential to evolve into optimal routes, en-
hancing walkability and aligning with TOD and Sustainability Development Goals principles. These
optimized routes play a crucial role in improving physical activities and upgrading public transporta-
tion in densely populated areas. As mentioned earlier, the design objectives will focus on promoting the
use of PS and integrating them with UGOS, guided by the baseline trails segmented by length. It is
noteworthy that in this experiment, the start point functions as the TH, serving as a central coordinate
(the intersection), while intermediate and end points serve as PS coordinates, providing resting areas
for commuters. Additionally, the function of this objective can be adjusted based on context, while in
this study, only the functions TH and PS are utilized.

In Layer 5, the primary objective is to conduct an EMOO using the NSGA-2 algorithm61,62 to iden-
tify the best solutions in line with walkability principles. The fitness objectives (FO)112 detailed in Ta-
ble 3, along with considerations outlined in Table 4, are crucial for determining optimal positions for PS
aligned with TH central points and evaluating their compatibility with the environment. Integrated
PS with UGOS113 can serve as Nodes or places for placemaking, enhancing community interaction and
well-being, while Routes act as transit stops for facilitating smooth mobility and efficient transporta-
tion systems.2,114,115

Table 3. FO definitions for EMOO (T1 and T2 coordinates shown in Fig. 6).

FO FO Definition Metric
1 Average PS to T1 route distance Coordinate to coordinate (m)
2 Average PS to T2 route distance Coordinate to coordinate (m)
3 Average PS to PS route distance Coordinate to coordinate (m)
4 Total Voronoi area (500m from PS) Area of Voronoi radii (m2)
5 Total PS Total count (number)

Table 4. Main objective considerations for urban in general for each FO. Kalideres contexts are
marked with an asterisk (*) (D = Directly considered, M = Mostly considered, I = Indirectly consid-
ered).

Objectives FO1 FO2 FO3 FO4 FO5
Enhancing visual attractions77 and walkability principles1,3 D D D D D
Managing transit volume,7 reducing vehicle idling, and controlling
informal vendors68*

M M M M D

Reducing commute times18 and lessening car dependence17 D D I I I
Utilizing pedestrian infrastructure64 and reducing jaywalking63* D D D M D
Enhancing transit connectivity,1,2,3 and reorganizing facilities32 D D D M D
Promoting a healthier city4,12 and improving physical activity1,2,3 D D D D D
Implementing public space as a low-cost local strategy11 and connect-
ing it to TH67

I I I M D

The genes116 for this simulation are constructed based on distances between potential TH and PS
coordinate points, following TOD Standard 3.0 benchmarks.72 These distances range from 300m to
500m in 10m intervals. After formulating the FO and genes, the EMOO is executed using customized
settings detailed in Table 5.
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Table 5. Simulation settings for multi-objective optimization in Layer 5.

Parameter Value property Value

Population settings
Population Size 2,500
Population Count 50
Population Size 50

Algorithm parameters
Crossover Probability 0.9
Mutation Rate 1/n
Mutation & Crossover Distribution Indices 20
Random Seed 1

Simulation parameters
No. of Genes (Sliders) 9
No. of Values (Slider Values) 189
Max No. of FO 5

Figure 10. Representative samples of solutions with Diamond Fitness Charts (DFC) in the top-
right corner of each solution.

Upon simulating with the settings in Table 5 (results shown in Fig. 10) the evaluation utilizes
Wallacei’s features116, including the Parallel Coordinate Plot (PCP), Standard Deviation Graph (SDG),
and Fitness Value Graph (FVG). Fig. 11 illustrates consistent results:
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1. Most FO values converge, except for FO5, showing tolerable fluctuations due to minor variations
in observed PS numbers, as seen in the PCP and SDG.

2. The 3D objective space indicates the Pareto front’s movement toward coordinates (0,0,0) with each
simulation generation.116

3. The EMOO and analysis confirm the effectiveness of the evolutionary method in generating nu-
merous solutions from a vast search space. The simulation’s efficiency is highlighted by a runtime
duration of about 23mins and 42s.

With this comprehensive data, the next layer will employ solution clustering using ISOA techniques
to select the best solution as a design guideline.99

Figure 11. Simulation results featuring (a) PCP visualization, (b) Pareto front of 2,500 solutions,
and (c) comprehensive graphs illustrating FO1–FO5 across FVG, SDG, and SDT.
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3.6 Layer 6: Clustering & selecting the best solution

Figure 12. Framework of the iterative solution optimization approach (ISOA).

Layer 6 compiles the solution candidates output from Layer 5 and iterates them into the best optimal
solution using the iterative solution optimization approach (ISOA) as a future design guideline. Fig. 12
shows how ISOA combines four methods: Machine-, Algorithm-, Collaborative-, and Context-driven.
The detailed ISOA formulations are outlined in Table 6, highlighting their objectives and flexibility
in adapting to various problem contexts. We utilize Machine-driven solutions with Wallacei’s ana-
lytical features with customizable parameters, while Algorithm-driven solutions are based on Rhino
& Grasshopper and can be adjusted parametrically. Collaborative- and Context-driven solutions are
developed in Microsoft Excel as needed.

Table 6. Overview of iterations and objectives for each approach in the ISOA (Fig. 12).

Approach Iteration Objective Tools

Machine-driven Iter0 Evolutionary simulation in Layer 5 generates so-
lution candidates.

Rhino, Grasshopper,
Wallacei

Iter1 K-means clustering algorithm segments solu-
tions from Iter0 into five clusters.

Rhino, Grasshopper,
Wallacei

Algorithm-driven
Iter2 Assigns index scores to fitness objective solutions

from Iter1 based on prioritization in context.
Rhino, Grasshopper

Iter3 Highlights the top 20 values for each objective
solution from Iter2.

Rhino, Grasshopper

Iter4 Merges data output from Iter2 and Iter3. Rhino, Grasshopper
Iter5 Identifies top domination solutions from Iter4. Rhino, Grasshopper

Collaborative-driven Iter6 Identifies new visual clusters based on fitness
objective recognition from Iter5 solutions using
DF charts.

Microsoft Excel

Context-driven
Iter7 Selects the highest-scored indexed visual clus-

ter from Iter6 solutions using the same indexing
method as Iter2.

Microsoft Excel

Iter8 Customizes indexing based on route length in
the first radius of TOD and calculates it for Iter7
solutions.

Microsoft Excel

Iter9 Recalculates output from Iter8 to find a design
guide based on route length, aiming to discover
the best routes for TOD connectivity.

Microsoft Excel
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3.6.1 Machine-driven methods

Figure 13. K-means clustering of all generations.

In this approach, Iter0 consists of solution candidates from Layer 5, optimized through EMOO, result-
ing in 2,500 solutions. Fig. 13 shows Iter1, where the K-means clustering algorithm is applied to Iter0,
generating five clusters based on solution characteristics, resulting in 263 solutions distributed across
these clusters.

3.6.2 Algorithm-driven methods

Figure 14. Algorithm-driven methods formulated in Grasshopper.

In this approach, the progression through four stages, as referred to in Fig. 14 is described as follows:

1. In Iter2, 263 solutions from Iter1 are analyzed based on five FO functions (FOi), each with a
specific weight distribution (wFOi

) as outlined in Tables 3 and 4. The equation for Iter2 is Iter2 =
Top

(∑m
i=1

FOi
wFOi

)
, resulting in 81 solutions.

2. Iter3 focuses on the top 20 values for each of the five objective functions, leading to Iter3 =

Top20(Iter2) and the selection of 100 potential solutions, of which 56 are unique.
3. Iter4 combines data subsets from Iter2 and Iter3 to create an integrated set of 181 solutions. Fi-

nally, Iter8 identifies recurring index values as “dominant solution” values from the 181 solutions,
resulting in a refined list of 29 solutions using Iter5 = Top(Dominant Solution, Iter4).
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3.6.3 Collaborative-driven methods

Figure 15. Map legend for PS coordinates and associated variables in Iter8 and Iter9.

In this approach, Iter6 evaluates the 29 solutions from Iter8 by visually categorizing them using DFC
radar plots to establish clusters. Fig. 15 illustrates how each solution is grouped based on visual simi-
larities in objective patterns, resulting in the identification of four distinct clusters.

3.6.4 Context-driven methods

Figure 16. Clustering process in Iter6 based on radar plot attributes.
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In this approach, Iter7 identifies the dominant cluster from Iter6. Fig. 16 demonstrates the application
of a customized weight formula for each FO, similar to the customized weighted considerations in
Iter2. The weights assigned to Clusters 1 to 4 are: 240, 190, 160, and 200. An asterisk value after 240
indicates the primary cluster with the highest cumulative sum of weights among all clusters.

Figure 17. Clustering process in Iter7 based on custom weight formula for each FO.

In Iter8, each direction (east, south, and west) is assigned a route orientation (Routes) to mea-
sure distances between specific points using coordinates from Fig. 17. The weighted route orientation
(WRouten) is calculated as WRouten = wn × length of Routen, where wn represents the weight assigned
to Routen. The weight distribution (Iter8 =

∑
direction WRoutedirection1

) for the route orientations is [0.50,
0.20, 0.30] for east, south, and west directions, respectively. The sum of weighted route orientations
in Table 6 is denoted as Iter8 =

∑
direction WRoutedirection1

. Based on this calculation, the last five solutions
with a score of 402 are selected for the subsequent Iteration, Iter9 (Table 7).

Table 7. Solution index assessment for Iter8. An asterisk (*) denotes selected solutions with the
lowest value.

Gen Idv Routeeast1 Routesouth1 Routewest1 WRouteeast1
WRoutesouth1

WRoutewest1
Iter8

17 5 460 440 500 230 88 150 468
18 4 460 440 500 230 88 150 468
19 9 440 460 500 220 92 150 462
19 11 440 460 500 220 92 150 462
21 12 440 460 500 220 92 150 462
22 16 440 460 500 220 92 150 462
23 10 450 460 500 225 92 150 467
23 14 440 460 500 220 92 150 462
23 16 440 460 500 220 92 150 462
24 19 440 460 500 220 92 150 462
27 34 450 460 500 225 92 150 467
46 40 410 450 500 205 90 150 445*
47 0 410 450 500 205 90 150 445*
47 30 410 450 500 205 90 150 445*
47 47 410 450 500 205 90 150 445*
48 7 410 450 500 205 90 150 445*
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In Iter9, southern transit routes (Routes) are optimized using coordinates from Fig. 17. The
south weight distribution (wsouthn

) for route orientations is [0.50, 0.30, 0.20] for south1 to south3
directions, respectively. The sum of weighted route orientations in Table 8 is denoted as Iter9 =∑

direction (south) WRoutedirection (south)1
. Solutions Gen46 Idv40 and Gen47 Idv30 with a score of 402 are se-

lected due to their lowest score. Fig. 18 illustrates one of these solutions meeting the set goals for
each FO, serving as a leading design guideline for future TH and PS planning. (Note: Gen46 Idv40 and
Gen47 Idv30 refer to the same solution with identical genes and FO values.)

Table 8. Solution index assessment for Iter9. An asterisk (*) denotes selected solutions with the
lowest value.

Gen Idv Routesouth1 Routesouth2 Routesouth3 WRoutesouth1
WRoutesouth2

WRoutesouth3
Iter9

46 40 450 350 360 225 70 108 402*
47 0 450 360 350 225 72 105 403
47 30 450 350 360 225 70 108 402*
47 47 450 360 350 225 72 105 403
48 7 450 360 350 225 72 105 403

Figure 18. One of the best solutions: Gen47 Idv30.

4 Discussions

This study aims to explore the connection between walkability and physical activity in urban settings,
focusing on developing a novel walkability model using our proposed DML approach. It emphasizes
the importance of improving walkability by optimizing pedestrian pathways referred to as “Routes”
and considering TH and PS as “Nodes.” Understanding how the built environment influences physical
activity is essential, emphasizing the use of innovative methodologies. The main findings from the DML
method experimentation are as follows: First, utilizing the DML method, this study proposes solutions
to abstract city problems, especially in rapidly urbanizing areas. This enhances the understanding
of factors influencing pedestrian behavior and urban design, contributing to the field of urban and
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built environment studies. The research utilizes ABMS and field observations, supported by tools like
Google Maps Typical Traffic, to provide initial insights into WM. Field walkability observations play a
crucial role in predicting and understanding context and characteristics, essential for capturing each
city’s unique attributes, as Figs. 2 and 3.

Second, regarding modeling techniques and optimization, integration is achieved through the DML
method, as depicted in Fig. 4 This method follows a sequential process, starting with Layer 1 for data
transition and involving the preparation of maps from crowdsourced data. It progresses through Layers
2 to 4 for modeling the crowds to decide on a formulation of objective definition and extends to Layer 5
for optimization, encompassing most of Layer 6, specifically machine- and algorithm-driven approaches.
This integration takes place within a single simulation environment, specifically Grasshopper, as de-
tailed in the Method section.

However, challenges arise when quantifying data from non-computational sources, especially when
converting intangible data from field walkability observations (early phase, Figs. 2 and 3) and defining
behavioral settings for ABMS. The process of merging this data into the ABMS environment, mapping
out aspects like people, vehicles, and urban features, is crucial for creating a walkability model (WM)
with representative numeric quantitative data for simulation, as demonstrated in Tables 1 and 2. It
requires a sensitive analysis of movement and behavior within the context.

Decisions aimed at results, determining when to start, pause, and stop the smoothing processes,
are crucial. These decisions should aim to simplify complex trails from ABMS and reveal the major and
minor axes emerging from the pre-simplified trails, as illustrated in Fig. 7 In the final phase, clustering
relies on reasonable rationale to accommodate wide, complex, and extensive contextual preferences,
resulting in the method not being fully automated. However, this nature allows for customizing the
ISOA method shown in Fig. 12 providing each context with a unique clustering solution.

Additionally, EMOO enables users to adjust or iterate on biases and conflicting objective outputs
observed during simulation runs, aiding in identifying the most suitable values among conflicting ob-
jectives. This is depicted in Fig. 11 where NSGA-2, in this case, can provide the best 2500 options from
approximately 790 billion possibilities within the total search space.

Third, understanding the intricate connection between theoretical concepts and practical applica-
tions is paramount for developing an improved method for enhancing walkability, addressing existing
walking habits, and promoting physical activity in urban contexts, particularly in developing countries.
This process is thoroughly outlined in the Method section and proves most effective when authors or
stakeholders have a comprehensive understanding of it. However, as emphasized in previous studies
in the Introduction and Case study sections, broad collaboration among relevant stakeholders such as
city planners, designers, urban or public-related professionals, and architects is essential. This collab-
orative effort can significantly enhance the practical application of this method and allocate substantial
resources to advance its development.

Fourth, methodological integration and implementation are advantageous in this context, with-
out excluding exploration of new possibilities in alternative scenarios. Although the authors have not
simulated this method in other contexts, as long as the method and data collection align with theo-
retical concepts and practical applications tailored to specific contexts (as mentioned in the Method
section), the DML method and its principles remain highly applicable. It is imperative to address key
elements such as connectivity, relevancy, and optimizing transit-oriented movement between Nodes
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(coordinates) and Routes (agent trails and walking behavior), as illustrated in Fig. 7 Additionally, cus-
tomizing parameters is crucial for promoting pedestrian-centric urban design, physical exercise, and
connectivity in urban communities, making it adaptable to various contextual characteristics.

In summary, this research focuses on WM using the DML method. It emphasizes the importance
of understanding the context and characteristics, incorporating ABMS and field walkability observa-
tions for behavioral exploration. The study addresses challenges related to data quantification and
decision-making, advocating for stakeholder collaboration to enhance practical applications. Further-
more, it highlights methodological integration and adaptability across various contexts, aiming to ad-
vance sustainable and livable pedestrian-centric TOD cities. Through comprehensive methodologies
and potential collaboration opportunities, the study provides valuable insights into optimizing urban
environments for improved walkability and human activity.

5 Limitations

The study primarily focuses on enhancing walkability through refining pedestrian pathways and city
features. However, limitations arise during the implementation of the DML method. The main limita-
tions of this experimentation are as follows: First, the generalizability of the DML method is limited
to being applied to diverse urban contexts. Which per now DML , including issues such as traffic con-
gestion, walkability challenges, urban development, and the availability of public spaces. It requires
tailoring the formulation of FOs in Layer 5, which may need additional adjustments for universal ap-
plicability. While engines like Wallacei help urban planners access the method, further adaptation
might be necessary. Future research should integrate advanced parameters tailored to specific urban
phenomena and involve stakeholders in validating the implementation of the DML method within its
context.

Second, navigating various software and frameworks associated with the DML method can pose
challenges for end-users. Developing an expanded version of the DML method within a single in-
dependent software can improve accessibility and streamline workflow, especially for urban software
developers. For further enhancements, creating dedicated software or plugins integrated into com-
monly used platforms like Rhino and Grasshopper is necessary for widespread global availability and
a user-friendly experience.

Fourth, the algorithms chosen in Layers 2, 3, and 4 are grounded in practical considerations but
may not universally apply to urban workflows, particularly in experimental methodologies like this.
For instance, 2D ABMS in Layer 2 may not account for cities with intricate 3D features such as fly-
overs or underground infrastructure. Smoothing algorithms in Layer 3 might necessitate alternative
approaches like soft-smoothing or custom considerations not covered here. Similarly, the SPA algo-
rithm in Layer 4 may require further evaluation against alternative algorithms for technical expansion.
The authors selected these algorithms based on pertinent studies, indicating that open collaboration
between urban and computational researchers is crucial. Moreover, when developing fundamental cri-
teria for algorithm selection, it is valuable to identify those suitable for diverse contexts and exclude
those that do not suit.

Fifth, the ISOA method in Layer 6, initially designed to choose the optimal solution from 2500 op-
tions, might not be suitable for scenarios requiring multiple solutions, a reduced number of candidate



Dynamic multi-layer walkability model for transit-oriented movement: Nodes and Routes optimization method 26

solutions, solely clustered solutions, or direct single solutions. Adaptations are necessary to address
diverse contexts. Future research should focus on crafting customized ISOA frameworks tailored to
specific contextual needs, integrating machine-, algorithm-, collaborative, and context-driven formula-
tions.

6 Conclusion

This study has introduced the innovative DML method and assessed its effectiveness through a real
case study. In conclusion, this research has expanded insights into the potential applications of the
DML process in urban design and architecture. It emphasizes addressing walkability challenges in
urban environments. It also highlights the potential of the DML method in promoting TOD and sus-
tainable livable city concepts, with a specific focus on pedestrian-friendly planning. The findings and
implementation strategies presented here align closely with existing literature addressing urban and
built environment issues. It is crucial to practically implement the recommendations from this study,
especially in cities facing similar challenges. Finally, this research significantly enhances our under-
standing of walkability and its pivotal role in improving physical activity and livability in urban areas.

7 Recommendations

Further research could explore the applicability of the DML method across diverse urban and cul-
tural contexts, along with its continued development. Moreover, investigating the long-term impacts
of improved walkability on public health outcomes could offer valuable insights for urban planners and
policymakers. Practical implementation opportunities through the DML method include:

• Urban planners and designers can leverage the developed framework for mapping future TH and
PS, addressing prevalent urban challenges.

• The information generated throughout the DML process (Layers 1 to 6) can assist planners and
designers in crafting comprehensive and well-informed designs.

• Planners, environmentalists, health advocates, and professionals can utilize early-stage DML
processes (Layers 1 and 2) as benchmarks for evaluating future designs and enhancing decision-
making.

• Researchers and developers can gain insights from pathways uncovered by the DML method, such
as those generated by the A-star algorithm and historical paths from ABMS (Layers 2, 3, and 4),
providing an understanding of human movement behavior within TH.

• Relevant stakeholders can exploit and utilize customization options proposed by the DML method
to tailor processes for specific objectives and address various ancillary tasks, leveraging acquired
contextual data.
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